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Binomial and Poisson models Subject 104

UNIT 7 — BINOMIAL AND POISSON MODELS

Syllabus objectives ~ (iv) Derive maximum likelihood estimators for the transition
intensities in models of transfers between states with
piecewise constant transition intensities.

v)

1 Binomial-type models

4.

Describe the Poisson approximation to the estimator in
3. in the case of a single decrement and its advantages
and disadvantages.

Describe the Binomial model of mortality, derive a maximum
likelihood estimator for the probability of death and compare
the Binomial model with the multiple state models.

1.

Describe the Binomial model of the mortality of a group
of identical individuals subject to no other decrements
between two given ages.

Derive the maximum likelihood estimator for the rate of
mortality in the Binomial model and its mean and
variance.

Describe the advantages and disadvantages of the
multiple state model and the Binomial model, including
consistency, efficiency, simplicity of the estimators and
their distributions, application to practical observational
plans and generality.

1.1 Much of the motivation for the analysis of mortality data is provided by the following
thought-experiment: observe N identical, independent lives aged x exactly for one year,
and record the number d who die. Then d is a sample value of a random variable D. If we
suppose that each life dies with probability g, and survives with probability 1 — g, then D
has a Binomial distribution with parameters N and g,. The intuitive estimate of g, is
4. =d ! N, and this is also the maximum likelihood estimate. The corresponding

estimator §, has mean g, and variance g,(1 —¢,) / N. This is the Binomial model of

mortality.

1.2 The Binomial model leads to problems if the observations are more realistic:

(a) we might not observe all lives over the same interval of age; and
(b) there will usually be decrements other than death, and sometimes increments as

well.
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1.3

1.4
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In terms of the data defined in Unit 5, the {a,} and the {b;} are in general not all the same.
Considering the i life, we have:

d; L,
P{Df = di] = b—q; Qx+ﬂ‘,- ’ (1_1'7; —a; (Ix+a,- )I . (df = 0’ 1.)
In respect of this individual, the above makes a contribution to the total likelihood, in

which b~a; 9x+a; APPCArs as a parameter and d as the observed statistic. Defining the
vector quantities:

q_ :(b| —a; q):+a| > by-ay quz e by —ay qx+a~)
d=(d),dy,..,dy)

we can write the total likelihood as:
5 o 4, I-d,
L(Qsd) — I-I b —-a; qx+a (l—b,-—va,- '?x+a‘- ) .

We have to find the value of the vector g — in general N numbers — which maximises
the likelihood. The dimension of the problem might be reduced if some of the {a;} and
the {b;} are equal, but the usual approach is to make an assumption about the distribution
of T, in the age range [x, x + 1] which allows us to express any p g Grsq intermsofgq,
making the likelihood a function of one parameter again. Possible assumptions are:

(@) uniform distribution of deaths: 9x=1q, (0<t<1)
(b)  the Balducci assumption: 1~ Tt =(1=0g, (0<1<1)
(¢)  constant force of mortality: Ge=1-eM (0<r<1)).

(Note that the Balducci assumption implies a decreasing force of mortality between
integer ages.)
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2 The actuarial estimate
21 Under the Balducci assumption:

J'\" .

E[D] = glb,-—a:-(f.wa‘-

N
I-a; Qx+a; — ‘E:Ib‘l_ai Pxia; 1-5,9x+b
i=

]

pe
-
v v
__Zi(l —-a;)q, — 2(1 —E[D;])(1-5,)q, .

2.2 For simplicity we are assuming that the {a;} and {b,} are known, and that death is the only

decrement. Substituting the observed number of deaths d on the left side would usually
give the moment estimate of g,. However, the right side also involves expected deaths in

such a way that it is impossible to extract all the terms in E[D] and the {E[D,]} on one side
and all the terms in g, on the other.

2.3 Summing the last term over the observed rather than the expected survivors, we obtain:
N N
E[D] = _Z](l-a;)qx _‘_Z!(l_d;‘)u_bi)‘?x
= =

leading to the estimate:

B d
b Zh-a)- T(-b)
iD;=0
in which the denominator is called the initial exposed to risk, counting the deaths as
exposed to risk until the end of the year of age. Under the crude assumption that deaths
occur, on average, at age x + %2, and ignoring the awkward possibility that a, > %4, we
obtain the formula:

PR
* ES+wd’

(Recall that £y = v, the observed total waiting time at age x.)

Note that it is only an approximate moment estimate of g,.

24 This is known to statisticians as the actuarial estimate. The Binomial model, and the
actuarial estimate, are not without strengths. The actuarial estimate avoids numerical
solution of equations and it might be used if there is a compelling reason to estimate q,

instead of something else. And, as we have seen, the Binomial model can be generalised
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2.5

3.1

3.2

3.3

simply to give a non-parametric estimate — the Kaplan-Meier estimate — which is widely
used in survival analysis.

However, it cannot be said that the actuarial estimate is any simpler than the estimates
based on multiple state models. Indeed, if the exposure data,are of the census type (see
Unit 10), the need to compute an initial exposed-to-risk is a pointless complication.
Crucially, the Binomial model is not so easily generalised to settings with more than one
decrement. Even the simplest case of two decrements gives rise to difficult problems; the
introduction of repeated transitions such as sickness and recovery is more difficult still.
Extension of models in these directions is much simpler within the multiple state
framework.

Poisson models

The Poisson distribution is used to model the number of “rare” events occurring during
some period of time, for example the number of particles emitted by a radioactive source
in a minute. Such analogies suggest the Poisson distribution as a model for the number of
deaths among a group of lives, given the time spent exposed-to-risk.

In this section we will let £7 denote the total observed waiting time; in terms of our

previous notation E; = v, the realised value of the total random waiting time V. If we
assume that we observe N individuals as before, and that the force of mortality is a
constant i, then a Poisson model is given by the assumption that D has a Poisson

distribution with parameter pES . That is:

~WES (\ peyd
PD=d] = £ M) ;’fEx) .

Under the observational plan described above, the Poisson model is not an exact model,
since it allows a non-zero probability of more than N deaths, but it is often a good
approximation. Alternatively, we might adjust the observational plan so that the Poisson

model is exact. Examples of suitable (but not necessarily practicable) observational plans
are:

(a) to continue observation until the waiting time reaches a pre-determined value; or

(b) toreplace each life who dies with an identical and independent life at the moment of
death.
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3.4 The Poisson likelihood leads to the following estimator of (constant) p:
7D
E;
with the following properties:
E[f]=p ;
——
Var[p] = —
Ex
and, in practice, we will substitute [ for 1 to estimate these from the data. Under the two-
state model, E[[1] = pand Var[fi] = u/ E[V], but the true values of u and E[V] are
unknown and must be estimated from the data as {i and ES respectively. So although the
estimators are different, we obtain the same numerical estimates of the parameter and of
the moments of the estimator, in either case.

4 Comparison of multiple-state, Binomial and Poisson models

4.1 When we compare models, we distinguish three aspects:

(@)  how well each model represents the process we are trying to model;

(b) how easy it is to find, characterise and use the model parameters, given the data with
which we must work; and

(c) how easily each model is extended to problems other than the study of human
mortality.

4.2 The underlying process we take to be the time(s) of death of one or more lives, considered
to be indistinguishable, except in respect of their deaths. If death is the only decrement,
this leads to the two specifications:
(a)  representing the time of death by the random variable T,; or
(b) the two-state model parameterised by p, -
They can usually be taken to be equivalent, since under reasonable conditions we can
derive the force of mortality starting with (a), while we can obtain the distribution of the
time to death starting with (b).
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It is evident that the two-state model represents the process closely (in fact, almost by
definition), while the Binomial model represents a restricted view of the process, since it
represents only the year of death, and not the time of death. This suggests that if sufficient
data are available to use the two-state model, then using the Binomial model instead will
not make the fullest use of the information. This turns out fo be the case.

Unless the waiting times E; are fixed in advance, which would be unusual in actuarial

work, the Poisson model is an approximation to the multiple-state model, in which E¢ is
regarded as non-random. This is acceptable if p is small.

Note that both formulations above are non-parametric in the usual sense, although both
can be regarded as parameterised by a function: p, in (b) and F,(¢) or £(¢) in (a). Direct

estimation of these functions (integrated in the case of p, ) leads to the Kaplan-Meier or
Nelson-Aalen estimates.

Parametric models are obtained if we restrict attention to single years of age, and in the
two-state model also assume a constant transition intensity.

The form and statistical properties of the parameter estimates (and how easy they are to
find and to use) depend on the form of the likelihoods, which in turn depend on the
available data.

If the exact dates of birth, entry to and exit from observation, and death (if observed) are
all known, then:

(a) we can calculate exactly the MLE of p in the two-state model;

(b) the Binomial model (or more accurately, Bernoulli model) based on individual lives
is complicated, and further assumptions (such as the Balducci assumption) are
needed to get results.

The consequence of (b) above is that the Binomial estimate of ¢, has a higher variance

than the estimate §, = 1— exp(j1) obtained from the two-state model. However, the
difference is tiny unless p is extremely high. (A rule of thumb, due to Sverdrup, is that if
p is very small, most of the information is in the number of deaths, while if p is very large,
most of the information is in the times of death.) Likewise, when p is very small, the

actuarial estimate §, =d, / (E +'2d,) provides acceptable results.

Often, not all the dates of the relevant events are known, and then the MLE of p in the
two-state model must also be approximated. In at least one important case (the
Continuous Mortality Investigation Bureau studies) the data allow easy approximation of

the waiting times E{ (see Unit 10).

In terms of computation, therefore, the two-state model is preferred if complete life
histories are available; otherwise both the two-state and Binomial models require some
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degree of numerical approximation at the estimation stage. There is no difference in
practice between the two-state and Poisson models, because the maximum likelihood

estimates are the same (though the estimators are not).

The statistical properties of the MLEs in the various models differ slightly.

()

(®)

(c)

In the multiple-state model, the MLE is consistent and asymptotically unbiased; the
variance of the estimator is also only available asymptotically. Simulation
experiments suggest that the results are reasonable if d, < 10.

In the Poisson model, the MLE is consistent and unbiased. Its mean and variance
are available exactly in terms of the true p, but are estimated from the data by the
same expressions as estimate the asymptotic mean and variance in the two-state
model.

In the “naive” Binomial model, in which N identical lives are observed for exactly
one year, the MLE is consistant and unbiased, and the exact mean and variance can
be obtained in terms of the true g,. In practice, the data rarely conform to the

“naive” model, so only approximate results are available.

When p is very small, there are few reasons to prefer any one of these models on the basis
of the statistical properties of the MLEs alone.

Finally we consider the generality of the models, chiefly how easily they can be extended
to more complicated processes than one decrement, and how effective they are when
forces of transition are high compared with typical human mortality.

(a)

(b)

(©)

The Markov multiple-state model is extended very simply as we have seen. No
matter how complex the model, the estimators have the same simple form and
statistical properties, depend only on data that will often be available exactly or
approximately, and the apparatus needed in applications (such as the Kolmogorov
equations) carries over without difficulty. Further extensions are possible, which
complicate the calculation of probabilities but not the estimation of parameters, for
example semi-Markov models.

The Poisson model extends just as easily to multiple decrements, but not to
processes with increments.

There are considerable difficulties in extending the Binomial model even to multiple
decrements. It is relatively simple to extend the ordinary life table to multiple
decrement tables, and these have long been used by actuaries. However, extending
the life table (essentially a computational tool) is very far from extending any
underlying probabilistic model, and, when the matter was investigated, it was found
not to be a simple task (we omit details). Extension of the life table to increments is
also not too hard, but extension of the Binomial model is harder still.
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If transition intensities are high, the loss of information (times of transitions) under the
Binomial model becomes more serious, while the Poisson model becomes a poorer
approximation to the multiple-state model (because there is more randomness in the
waiting times).

.
In conclusion, when studying ordinary human mortality, transition intensities are so low
that none of the models considered stands out on statistical grounds alone. This is why
actuaries have used life tables so successfully for so long.

However, when we must model more complicated processes or higher transition
intensities, which is increasingly the case as new insurance products are developed, the
multiple state approach appears to offer significant advantages.

[t may still be the case that a simplified approach is ultimately adopted, for example for
calculations to be made by office staff, but it is best to begin with a specification which
most nearly represents the process being modelled, and then make approximations as
required for estimation and in applications.

END
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