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UNIT 3 — ESTIMATING THE LIFETIME
DISTRIBUTION Fy.(¢)

Syllabus objectives  (i1) Describe estimation procedures for lifetime distributions.

1. Describe how lifetime data might be censored, including
right- and left-censoring, Type I censoring, random
censoring,.

2. Describe the estimation of the empirical survival
function in the absence of censoring, and what problems
are introduced by censoring.

3. Describe the Kaplan-Meier (or product limit) estimate of
the survival function in the presence of censoring,
explain how it arises as a maximum likelihood estimate,
compute it from typical data and estimate its variance.

4, Describe the Nelson-Aalen estimate of the cumulative
hazard rate in the presence of censoring, explain how it
arises as a maximum likelihood estimate, compute it
from typical data and estimate its variance.

(iv) Derive maximum likelihood estimators for the transition
intensities in models of transfers between states with
piecewise constant transition intensities.

1. Describe an observational plan in respect of a finite
number of individuals observed during a finite period of
time, and define the resulting statistics, including the
waiting times.

1 Questions of inference

1.1 We now turn to statistical inference. Given some mild conditions on the distribution of T,
we can obtain all information by estimating F(¢), S(f), f(£) or p, forall £1=0.

1.2 The simplest experiment would be to observe a large number of new-born lives; the
proportion alive at age 1>0 would furnish an estimate of S(¢). The estimate would be a
step function, and the larger the sample the closer to a smooth function we would expect it
to be. For use in applications it could be smoothed further. We need not assume that T is
a member of any parametric family; this is a non-parametric approach to estimation. You
will recognise this as the empirical distribution function of T.
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1.3

1.4

1.5

2.1

Clearly, there are some practical problems:

(a) Even if a satisfactory group of lives could be found, the experiment would take
about 100 years to complete. .

(b) The observational plan requires us to observe the deaths of all the lives in the
sample. In practice many would be lost to the investigation, for one reason or
another, and to exclude these from the analysis might bias the result. The
statistical term for this problem is censoring. All we know in respect of some
lives is that they died after a certain age.

In medical statistics, where the lifetimes are often shorter, non-parametric estimation is
very important. In this unit we show how the experiment above can be amended to allow
for censoring. Otherwise, we must use a different observational plan, and base inference
on data gathered over a shorter time: e.g. 3 or 4 years. A consequence is that we no longer
observe the same cohort throughout their joint lifetimes, so we might not be sampling
from the same distribution. It might be sensible to widen the model assumption, so that

the mortality of lives born in year y is modelled by a random variable T”, for example. In
practice we usually divide the investigation up into single years of age. We return to
investigations like these in Unit 4.

Observing lives between (say) integer ages x and x + 1, and limiting the period of
investigation, are also forms of censoring. Censoring might still occur at unpredictable
times — by lapsing a life policy for example — but survivors will certainly be lost to
observation at a known time, either on attaining age x + 1 or when the investigation ends.

Censoring mechanisms

Censoring is the key feature of survival data (indeed survival analysis might be defined as
the analysis of censored data) and the mechanisms which give rise to censoring play an
important part in statistical inference. Some of the commonest assumptions are these
(they are not all mutually exclusive):

(a) Right-censoring

Data are right-censored if the censoring mechanism cuts short observations in
progress. An example is the ending of an investigation on a fixed date.

(b) Left-censoring

Data are left-censored if the censoring mechanism prevents us from knowing
when entry into the state which we wish to observe took place. An example
arises in medical studies in which patients are subject to regular examinations.
Discovery of a condition tells us only that the onset fell in the period since the
previous examination; the time elapsed since onset has been left-censored.
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Interval-censoring

Data are interval-censored if the observational plan only allows us to say that an
event of interest fell within some interval of time. An example arises in actuarial
investigations, where we might know only the calendar year of death.

Random censoring

If censoring is random, then the time C, (say) at which observation of the i
lifetime is censored is a random variable. The observation will be censored if
C, < T, where T, is the (random) lifetime of the i life. The case in which the

censoring mechanism is a second decrement of interest gives rise to multiple
decrement models.

Non-informative censoring

Censoring is non-informative if it gives no information about the lifetimes {T;}.
In the case of random censoring, the independence of each pair T;, C; is

sufficient to ensure that the censoring is non-informative. Informative censoring
is more difficult to analyse, essentially because the resulting likelihoods cannot
usually be factorised.

Type I censoring

If the censoring times {C;} are known in advance (a degenerate case of random
censoring) then the mechanism is called “Type I censoring”.

Type II censoring.
If observation is continued until a predetermined number of deaths has occurred,

then “Type II censoring” is said to be present. This can simplify the analysis,
because then the number of events of interest is non-random.

2.2 It is obvious that the observational plan is likely to introduce censoring of some kind, and
consideration should be given to the effect on the analysis in specifying the observational
plan. Censoring might also depend on the results of the observations to date; for example
if strong enough evidence accumulates during the course of a medical experiment, the
investigation might be ended prematurely, so that the better treatment can be extended to
all the subjects under study, or the inferior treatment withdrawn.
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3

3.1
3.2

3.3

The Kaplan-Meier (product-limit) estimator

In this section we develop the empirical distribution function to allow for censoring.

We will consider lifetimes as a function of time t without méntion of a starting age x. The
following could be applied equally to newborn lives, to lives aged x at outset, or to lives
with some property in common at time ¢ = 0, for example diagnosis of a medical
condition. Medical studies are often based on time since diagnosis or time since the start
of treatment, and if the patient’s age enters the analysis it is usually as an explanatory
variable in a regression model.

Suppose we observe a population of N lives in the presence of non-informative censoring,
and suppose we observe m deaths. Let:

<t <.<y

be the ordered times at which deaths were observed. We do not assume that k = n, SO
more than one death might be observed at a single failure time. Suppose that d; deaths are
observed at time ¢, (1 </ < k), so thatd, + d, + ... + d, = m. Observation of the remaining
N — m lives is censored; suppose that ¢; lives are censored between times f;and g,
(0 </ < k) where we define £,= 0 and ,,, = = to allow for censored observations after the
last observed failure time; then ¢, + ¢y *t...t¢,=N-m. Strictly, we regard all the ¢
censored observations as falling in the open interval (4, ;+1). Suppose that the times at

which observations are censored within this interval are Uis Lgs e ,rjcj (which need not be
distinct). It will also be convenient to define n; to be the number of lives who are alive

and at risk at time {; , that is, just before the /M observed lifetime (1 <j<k). To obtain

the likelihood of these observations, without making any prior assumptions about the form
of I(¢), proceed as flows:

(a) Deaths. The probability that a death occurs at time Lis F(L) = F(¢; ).

(b) Censored observations. The probability that a life should survive to be censored
at time tyis 1 — F(t; ), under non-informative censoring.

Therefore the total likelihood is:

J=k I=c;

ik
jﬂ(f"(fj)—F(!}))d" [T IT(1=F(z)). )
Jj=1 J':O =1

We ask what function F(r) will maximise this likelihood, constrained only by the re-
quirement that it should be a distribution function. Since any distribution function is non-
decreasing, each factor (1 — F{(1;)) will be maximised ifF({H) = F(t;), while we must have
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F(4))> F(t;) ateach observed lifetime or the likelihood will be zero. Therefore any

maximum likelihood estimate of F(r) will be a step function, with jumps at each observed
lifetime.

3.4 It is convenient to extend to discrete distributions the definition of force of mortality (or

hazard) given in Unit 2 for continuous distributions. Suppose F(f) has probability masses
at the points 1, t,, ... t;,. Then define:

Aj=PT=elr2r]  asjsh.

(We use the symbol A to avoid confusion with the usual force of mortality.) If we assume
that T has a discrete distribution them:

1-F(t)= 1 (1-4,)

o<
U—-f

so that, with the conventions that /(0) = 0 and dy =0, the likelihood can be written:

(F(e;)-Fc ')) L 1

=k L) —E J=k _nd; =

_,I;Il I-F(t‘;) ;1:[{) [(I—F(!’j J) L-[l (I-—F(Iﬂ))}
J=k

J

»
=TI 2% "HO (=F )™ (1=F, )%
j:

J=k 4. ~d;
[T A% (1-a,) ™,
j=1

3.5 This is proportional to a product of independent binomial likelihoods, so that the
maximum is attained by setting:

i dj _
7\'1' = L (1 <j<k)
n.
J
F(ty = 1- 1 (1-4,)
f‘,-Sn'
3.6 This is the Kaplan-Meier or product-limit estimate. It can be viewed in several ways:
(a) In studying the probability of death over small age intervals, we can chose to

divide up the time axis in any way we like. A convenient choice is to have a very
short time interval containing each ; (short enough to exclude any of the censored
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3.7

4.1

5.1

Unit 3, Page 6

times t;) and longer time intervals containing only censored observations. The
only information gained from the latter is that there were no deaths, so there is no
reason to assume anything except that /(¢) is constant within these intervals, while

the former contribute Binomial estimates (as we have seen) at the observed
lifetimes.

(b) Alternatively, we might choose finer and finer partitions of the time axis, and
estimate (1 — F(2)) as the product of the probabilities of surviving each sub-
interval. Then, with the above definition of the discrete force of mortality, we
obtain the Kaplan-Meier estimate as the mesh of the partition tends to zero. This
is the origin of the name “product-limit” estimate, by which the Kaplan-Meier
estimate is sometimes known.

Only those at risk at the observed lifetimes {t;} contribute to the estimate. It follows that it
Is unnecessary to start observation on all lives at the same time or age; the estimate is valid
for data truncated from the left, provided the truncation is non-informative in the sense

that entry to the study at a particular age or time is independent of the remaining lifetime.
(Note that left-truncation is not the same as left-censoring.)

Comparing lifetime distributions

Since Kaplan-Meier estimates are often used to compare the lifetime distributions of two
or more populations — for example, in comparing medical treatments — their statistical

properties are important. Approximate formulae for the variance of ﬁ(z) are available.
Greenwood's formula (proof not required)

Var[ﬁ'(r)]:([__ﬁ-(l))z ¥ __dj__ Chny 7 - :'; _
st ni(n;—d;) coe p

is reasonable over most ¢, but might tend to understate the variance in the tails of the
distribution.

The Nelson-Aalen estimate

An alternative non-parametric approach is to estimate the integrated hazard:

'
Ar=[pds+ 3 A
0

tst

where the integral deals with the continuous part of the distribution and the sum with the
discrete part (since this methodology was developed by statisticians, the term “integrated
hazard™ is in universal use, and “integrated force of mortality” is almost never seen)

© Faculty and Institute of Actuaries

i

B!

r

—

r—



H E E E N

H N

H EE N

H BH EH B B B N

2000

5.2

5.3

5.4

© Faculty and Institute of Actuaries

Estimating the lifetime distribution F (1) Subject 104

The Nelson-Aalen estimate of the integrated hazard is:

The Kaplan-Meier estimate can be approximated in terms of /A\, :

d;
-1 [1-42
fjﬂf ”J
d;
|l —exp|- 2 —=|.

= 1 —exp(- Ar)

Fy

bl

Corresponding to Greenwoods’ formula for the variance of the Kaplan-Meier estimate
there is a formula for the variance of the Nelson-Aelen estimate:

3

Var[A,]~ X

(=t H

END
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