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Exposed to risk Subject 104

UNIT 10 — EXPOSED TO RISK

Syllabus objectives

Introduction

(vi) Describe how to estimate transition intensities depending on
age, exactly or using the census approximation.

1.

Explain the importance of dividing the data into
homogeneous classes, including subdivision by age and
sex.

Describe the principle of correspondence and explain its
fundamental importance in the estimation procedure.

Specify the data needed for the exact calculation of a
central exposed to risk (waiting time) depending on age
and sex.

Calculate a central exposed to risk given the data in 3.

Explain how to obtain estimates of transition
probabilities, including in the single decrement model
the actuarial estimate based on the simple adjustment to
the central exposed to risk.

Explain the assumptions underlying the census
approximation of waiting times.

Explain the concept of rate interval.

Develop census formulae given the following definitions
of age, in each case for both death and census data:

e age last birthday
e age next birthday on previous | January
¢ age last birthday on previous policy anniversary

Specify the age to which estimates of transition
intensities or probabilities apply in the cases in 8.

We have seen how exposed to risk arises in a probabilistic model of mortality. In
particular, we have seen

(a)  Central exposed to risk £, namely the observed waiting time in a multiple-state
or Poisson model; and
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(b)  Initial exposed to risk £,, which we have derived in approximate fashion as

E, = E{ +'d,, via the actuarial estimate in the Binomial framework.

In this Unit we consider some problems of a computational pature, concerning the
approximation of exposed to risk from incomplete exposure data.

e,

1.2 First, we comment on the difficulty, or otherwise, of the subject of exposed to risk.

(a)  Central exposed to risk (or waiting times) are very natural quantities, intrinsically
observable even if observation may be incomplete in practice. That is, just record
the time spent under observation by each life. Note that this is so even if lives are
observed for only part of the year of age [x, x+1], for whatever reason.

(b)  Initial exposed to risk requires adjustments to be made in respect of those lives who
die (and strictly in other cases too, which we have glossed over). It is thus a more
complicated object than a central exposed to risk, and, unless we can use the
idealised Binomial model in which NV lives are observed for a whole year without
censoring, its interpretation is less simple.

(c)  The central exposed to risk carries through unchanged to arbitrarily complicated
multiple-decrement or multiple-state models; the initial exposed to risk does not.

(d)  The central exposed to risk (as we shall see) can easily be approximated in terms of
the kind of incomplete observations that are typically available in insured lives
investigations. To obtain an initial exposed to risk requires further adjustments, for
which it is hard to find good reasons.

= I B B B B

In the past, actuaries have tended to pay great attention to initial exposed to risk because
the Binomial model was the “prototype” of the life table. The Binomial approach was also
carried through to multiple decrements, which multiplied the difficulties. Not least of the
drawbacks is that the initial exposed to risk becomes increasingly tricky to interpret in
terms of the underlying process being modelled as we approach more elaborate situations.
Compared with the simplicity of central exposed to risk, in a multiple-state or Poisson
setting, much of the difficulty can now be seen to be avoidable.

-

1.3 In this Unit, we will confine the discussion to central exposed to risk. We will not discuss

initial exposed to risk beyond making the observation that E, = ES +'%d, isusually a
reasonable approximation, for reasons already given. Given the difficulties of initial
exposed to risk, and the statistical considerations, it is strongly suggested that a multiple-
state or Poisson approach be adopted. A Binomial approach should be used only where
the data makes the alternative approaches impossible.

1.4 Sometimes, of course, the data might be so limited that estimation in the Binomial model
is easiest. This is very unusual in actuarial investigations, and, in any case, the
circumstances will always be different, so no prescriptive approach can be of much use.
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What matters is to understand how the data are related to (or generated by) the
probabilistic model, and to be able to work from these first principles in any unusual case.

2 Homogeneity i

2.1 All our models and analyses are based on the assumption that we can observe groups of
identical lives (or at least, lives whose mortality characteristics are the same). In practice,
this is never possible. However, we can at least subdivide our data according to
characteristics known, from experience, to have a significant effect on mortality. This
ought to reduce the heterogeneity of each class so formed, although much will probably
remain.

2.2 Among the factors in respect of which life insurance mortality statistics are often sub-
divided are:

(a) Sex _

(b) Age (as we have assumed throughout)

()  Type of policy (which often reflects the reason for insuring)

(d)  Smoker/non-smoker status

(e) Level of underwriting

()  Duration in force

Others that might be used are:

(g) Sales channel

(h)  Policy size

(i) Occupation of policyholder

()  Known impairments,

2:3 Two key points are:

(a)  Sub-division cannot be carried out unless the relevant information is collected,
generally on the proposal form. Sometimes factors for which there is strong
external evidence of an effect on mortality cannot be used because (for example)
proposal forms have been kept short for marketing or administrative reasons.

(b)  Even in quite large investigations, sub-division using many factors results in much
smaller populations in each class, making the statistics more difficult. A balance
must be struck between obtaining more and more homogeneity, and retaining large
enough populations to make analysis possible.
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3 The principle of correspondence
3.1 Mortality investigations based on estimation of g, OF My, at individual ages must bring
together two different items of data: deaths and exposures. [t is self-evident that these
should be defined consistently, or their ratios are meaningless. Care is sometimes needed,
however, because these data are often obtained from different sources in the life office.
For example, death data might be obtained from the claims file, while exposure data might
be obtained from the premium collection file. There is no guarantee that these use the
same definition of the policyholders’ ages.
3.2 A precise statement of what we mean by “defined consistently” is given by the principle
of correspondence.
A life alive at time 7 should be included in the exposure at age x at time ¢ if and only
if, were that life to die immediately, he or she would be counted in the death data d,
at age x.
This seems almost a triviality, but it is very important and useful.
4 Exact calculation of E¢
4.1 The procedure for the exact calculation of E¢ is obvious:
(a) record all dates of birth
(b)  record all dates of entry into observation
(c)  records all dates of exit from observation
(d) compute E{.
4.2 [f we add to the data above the cause of the cessation of observation, we have d_ as well,
and we have finished.
4.3 All of the remainder of this Unit is about approximate procedures when the data above
have not been recorded. We will deal with two questions:
(@)  What happens when the dates of entry to and exit from observation have not been
recorded? (Section 5); and
(b)  What happens if the definition of age does not correspond exactly to the age interval
x to x+] (for integer x)? (Sections 6, 7 and 8)
Unit 10, Page 4 © Faculty and Institute of Actuaries
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Census approximations to E¢

Suppose in this section that we have death data of the form:

d = total number of deaths age x last birthday during calendar years K,
K+1, ..., K+N.

That is, we have observations over N calendar years of all deaths between ages x and x+1.

However, instead of the times of entry to and exit from observation of each life being
known, we have instead only the following census data:

Py Number of lives under observation, aged x last birthday at time ¢,
where £ = | January in calendar years K, K+1, ..., K+N, K+N+1.

This is in fact similar to the way in which data are submitted to the CMIB. It is often quite
convenient for companies to submit a total of policies in force on a date such as 1 January.

Now define P, to be the number of lives under observation, aged x last birthday, at any
time £. Thus we only obtain the values of P, iftis a1 January (a census date). We must

estimate E_ from the given census data. Note that

K+N+1
ES= f!’x,,df
K

Then the problem reduces to estimating an integral, given the integrand at just a few points

(in this case, integer spaced calendar times). This is a routine problem in numerical
analysis.

The simplest approximation, and the one most often used, is that P is linear between
census dates, leading to the trapezium approximation

- K+N+1 K+N
Ex = JPx,tdt Z l/Z(Px.e‘ + Px,r+!)
K

1=K

mn

This is the method used by the CMIB. It is easily adapted to census data available at more
or less frequent intervals, or at irregular intervals.
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6 Different definitions of age
6.1 In Section 5, we used a definition of age “x last birthday”, which identifies the year of age

[x, x+1]. Other definitions could be used, for example

dj(rz] = Number of deaths age x nearest birthday during calendar years X,
K+1, ..., K+N

df) = Number of deaths age x next birthday during calendar years X,
Kb iy KRN,

Each of these identifies a different year of age, called the rate interval. Consequently,
estimates ¢ or [i obtained from these data will not be estimates of g, OF Ky, but will be
estimates of ¢ and p at other ages. We summarise the possibilities as follows:

Definition Rate q 1
of x interval estimates estimates
age last birthday [x, x+1] q, Moty
age nearest birthday [x-Ya, x+14] Gy, I,
age next birthday [x-1, x] Gyt Ky,

Once the rate interval has been identified (from the age definition used in d,) the rule is

that the crude ¢ estimates g at the start of the rate interval and the crude [1 estimates 1 in
the middle of the rate interval.

6.2 We must ensure that the census data are consistent with the death data. We invoke the
principle of correspondence; we must check the following:

The census data P, , are consistent with the death data d. if and only if, were any of

the lives counted in P, ,to die on the census date, he or she would be included in
d

x*

The definitions of census data corresponding to the rate intervals [x-Y5, x+%] and [x-1, x]

are:
PX(.E,) = Number of lives under observation, age x nearest birthday at time ¢,
where ¢ = | January in calendar year K, K+1, ..., K+N, K+N+1
and
PS) = Number of lives under observation, age x next birthday at time ¢,
where ¢ = | January in calendar year K, K+1, ..., K+N, K+N+1
Unit 10, Page 6 © Faculty and Institute of Actuaries
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In the event that the death data and the census data use different definitions of age, we
must adjust the census data. Unless it is unavoidable, we never adjust the death data, since
that “carries most information” when rates of mortality are small. (Hence, it is always the
death data that determines what rate interval to use.) For example, the CMIB uses the
definition “age nearest birthday” in its work; that is, death data as in dﬁz) . However,
some life offices contribute census data classified by “age last birthday”, because that is

what is available from their records. The latter must be adjusted in some way. For
example, if we define

Ple = VPt Py

. 2
we can see that P/, approximates P{% .

Calendar year rate intervals

All the rate intervals considered so far are years of age; they are called life year rate
intervals for this reason. Other definitions of age are possible, which imply rate intervals
that are not years of age.

Consider the following definition of death data:

d, = Number of deaths, age x on the birthday in the calendar year of death,
during calendar years K, K+1, ..., K+N.

It is easy to see that we get a definition of this kind if the only items of data are the
calendar year of birth and the calendar year of death, which is quite within the bounds of
possibility.

In this case, the rate interval is the calendar year running from 1 January to 31 December.
One way to see this is that a life included in d, would be so included regardless of when
he or she died during the calendar year.

A useful way to determine the rate interval (always from the definition of d.) is to find the

event that would cause someone to change from age x to age x+1 according to the age
definition given. In the example above, it is crossing the calendar year-end.

A definition of census data compatible with the death data above (as can be checked using
the principle of correspondence) is:

P., = Number of lives under observation, age x next birthday, at time ¢, where
t=1 January in calendar year K, K+1, ..., K+N, K+N+1

© Faculty and Institute of Actuaries Unit 10, Page 7
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However, since we now follow the same cohort of lives throughout each calendar year, the
census approximation changes slightly to

. K+N+!1 K+N
E_r = .[Px,fd{ = Z J/Z(Px,r + Px+|,£+|)' i
K =K

The final point to consider is how crude estimates g and p derived from calendar year
data as above are to be interpreted. In other words, what do ¢ and [i estimate?

Arguing along the lines of the life year rate interval, we would like to say that ¢ estimates
q,» where y is the age at the start of the rate interval. But now there is no unique age at the
start of the rate interval. All we know is that at the start of the rate interval, ages range
from x-1 exact to x exact. The best we can do is to say that ¢ estimates g, where y is the
mean age at the start of the rate interval. If birthdays are uniformly distributed over the
calendar year, § estimates 4.y, By similar reasoning, [ estimates L.

The same general principles can be used whenever the form of the death data suggests a
rate interval which is a calendar year. In particular, note that a definition of “age x last
birthday” is the same as “age x + 1 next birthday”.

Policy year rate intervals

The final form of rate interval sometimes met is one defined by policy duration. Integer
policy durations are called policy anniversaries. Consider the following example:

d, = Number of deaths, age x last birthday at the policy anniversary preceding
(or coincident with) the date of death, during calendar years K, K+1, ...,
K+N.

Such a definition might arise if all we know is the age last birthday when the policy was
taken out, and the policy duration at death (in years). This is quite plausible if the policy
proposal form does not ask for the date of birth.

The rate interval in this case is the policy year; it is crossing a policy anniversary that
causes the age definition to change from x to x+1.

A consistent definition of census data would be:
P., = Number of lives under observation, age x last birthday at the preceding

(or coincident) policy anniversary, at time ¢, where ¢ = | January in
calendar year K, K+1, ..., K+N, K+N+1.
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If lives can be assumed to change their age definition throughout the calendar year (that is
policy anniversaries are spread over the calendar year) we have the census approximation:

]

K+N+l K+N
ES = [P dt = Z;\ Va( P, + P,
K =K

x,r+!) d

As in the calendar year example, we say that ¢ and [1 estimate g, and Ky, » Where yis
the mean age at the start of the rate interval. Assuming a uniform distribution of birthdays
with respect to policy anniversaries, we have G estimates ¢, and [i estimates TN

These principles can be used whenever the form of the death data suggests a rate interval
which is a policy year.

Sometimes the assumptions about the distribution of policy anniversaries have to be
treated with care. For example:

(a) some policies tend tp be taken out in large numbers just before the end of the tax
year;

(b)  there might be a tendency to take out policies just before dates upon which
premiums would rise, for example just before a birthday; or

(¢)  under group schemes, where insurance cover for employees is provided by the
employer, the policy anniversaries might all be the same (in which case we have
both a policy year rate interval and a calendar year rate interval).

END
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